Foundations of Advanced Mathematics
 AS Pure Mathematics Bridging Test 12

Questions

1 Three of the following statements are true and one is false. Which one is false?
A An amount of money is divided in the ratio 3:1. The smaller part is 25% of the total amount.

B A dress originally priced at $£ 49.50$ is reduced by 20%. The new price is $£ 39.60$.
C Increasing a price by 30% is the same as multiplying the price by 1.3.
D Decreasing a price by 30% is the same as dividing the price by 1.3.

2 Djuna records the distance that she cycles as 6 kilometres, to the nearest 100 metres. She also notes that it has taken her 32 minutes, to the nearest minute.

Three of the following statements are true and one is false. Which one is false?
A The greatest possible average speed is 192 metres per minute, correct to the nearest integer.

B The least possible average speed is 183 metres per minute, correct to the nearest integer.
C The greatest possible average speed is 11.52 kilometres per hour, correct to 2 decimal places.

D The least possible average speed is 10.89 kilometres per hour, correct to 2 decimal places

3 Three of the following statements are true and one is false. Which one is false?

A $\quad s=u t+\frac{1}{2} a t^{2}$ may be arranged to give $a=\frac{2(s-u t)}{t^{2}}$

B $y=4 x-5$ may be arranged to give $x=\frac{y}{4}+5$

C $x=\sqrt{\frac{A}{6}}$ may be arranged to give $A=6 x^{2}$

D $\frac{P V}{T}=R$ may be arranged to give $P=\frac{R T}{V}$

4 Which one of the following is the correct simplification of $\frac{2(2 x+1)}{3}-\frac{x-3}{5}$?
A $\frac{17 x+24}{15}$
B $\frac{17 x+19}{15}$
C $\frac{17 x+14}{15}$
D $\frac{17 x+1}{15}$

5 The length of each edge of a solid cuboid is doubled to make a similar cuboid.
Three of the following statements are true and one is false. Which one is false?
A The length of the diagonal of a face is doubled.
B The area of each face of the cuboid is increased by a factor of 4.
C The total surface area of the cuboid is increased by a factor of 6 .

D The volume of the cuboid is increased by a factor of 8 .

6 Which one of the following is the solution of the equation $3 x^{2}-11 x-7=0$?
A $\frac{11 \pm \sqrt{205}}{6}$
B $\frac{-11 \pm \sqrt{205}}{6}$
C $\frac{11 \pm \sqrt{37}}{6}$
$D \frac{-11 \pm \sqrt{37}}{6}$

7 Anna and Emily are both solving trigonometry problems.

Anna claims that angle ACB is 32°, correct to the nearest degree.
Emily claims that length DF is 43 m , correct to the nearest metre.
Which one of the following statements is true?
A Anna and Emily are both correct.
B Anna is correct and Emily is incorrect.
C Anna is incorrect and Emily is correct.
D Anna and Emily are both incorrect.

8 A straight line has a gradient of -3 and an intercept of 2 on the y-axis.
Which one of the following is a correct equation of the line?
A $\quad y-3 x+2=0$
B $\quad x+2 y-3=0$
C $y+3 x-2=0$
D $\quad x+3 y+2=0$
$9 \quad$ A point P has coordinates $(4,1)$.
Which one of the following points is nearest to P ?
A $(4,9)$
B $(-3,5)$
$\mathbf{C}(3,-7)$
D (-1, -5)

10 The length of an aeroplane flight is 5200 kilometres, correct to the nearest 100 kilometres. The duration of the flight is 6 hours and 20 minutes, correct to the nearest 10 minutes.

Which one of the following is the greatest possible average speed of the aeroplane, correct to the nearest $10 \mathrm{~km} \mathrm{~h}-1$?
A $820 \mathrm{~km} \mathrm{~h}^{-1}$
B $830 \mathrm{~km} \mathrm{~h}^{-1}$
C $840 \mathrm{~km} \mathrm{~h}^{-1}$
D $850 \mathrm{~km} \mathrm{~h}^{-1}$

