

Foundations of Advanced Mathematics **AS Pure Mathematics Bridging Test 9**

Questions

1 Jo has a set of scales. The scales can be read to the nearest gram.

Three of the following statements are true and **one** is false. Which one is **false**?

- A Jo records a mass as 0.675 kg. This is consistent with the accuracy of the scales.
- **B** Jo weighs 10 identical coins together. Calculation of the average gives the mass of each coin to the nearest 0.1 g.
- C Jo records a mass as 50 g. The lowest possible value of this mass is 45 g.
- **D** A mass recorded as 50 g could have an error of up to 1%.
- 2 The number 1234.567 is written below in four different ways.

Three of the following ways are correct and **one** is incorrect. Which one is **incorrect**?

- A 1234.6, correct to 1 decimal place.
- **B** 123, correct to 3 significant figures.
- C 1.2×10^3 , correct to 2 significant figures.
- **D** 12×10^2 , correct to the nearest 100.
- 3 Three of the following statements are true and **one** is false. Which one is **false**?
 - **A** 43% is equivalent to 0.43.
 - **B** 0.0001 is equivalent to 1%.
 - C 28% is equivalent to $\frac{7}{25}$.
 - **D** $\frac{17}{20}$ is equivalent to 0.85.
- Which **one** of the following value of $\frac{(22.85+11.19)^2}{3.7\times2.3}$, correct to 1 decimal place?
 - **A** 37.6
 - **B** 720.3

Shona says that the formula for the volume of a cone, $V = \frac{1}{3}\pi r^2 h$, can be rewritten

as
$$r = \sqrt{\frac{3V}{\pi h}}$$
.

Olivia says that the formula for the period of a pendulum,
$$T = 2\pi \sqrt{\frac{l}{g}}$$
, can be rewritten

as
$$l = \frac{T^2 g}{4\pi^2}$$
.

Three of the following statements are false and **one** is true. Which one is **true**?

- **A** Shona is right but Olivia is wrong.
- **B** Olivia is right but Shona is wrong.
- C Both Olivia and Shona are wrong.
- **D** Both Olivia and Shona are right.
- **6** Wendy is asked to carry out the following instructions.

When writing down the process algebraically she takes the number to be x. She then works through the instructions.

Which **one** of the following expressions is the **correct** result?

$$\mathbf{A} \qquad \frac{\left(2x+3\right)^2}{4}$$

$$\mathbf{B} \qquad \frac{2(x+3)^2}{4}$$

$$\mathbf{C} \qquad \frac{2x+3^2}{4}$$

D
$$2x + \frac{3^2}{4}$$

7 Which one of the following is the correct graph of $y = 1 + \cos x$?

8 Paula is attempting to solve the following simultaneous equations.

D 3x - 4y = 5 (i) 2x + y = 7 (ii)

Her attempt is shown in the four steps below, but the answer is incorrect.

In which of the following lines A, B, C, D does the first error appear?

A
$$3x - 4y = 5$$
 (i)
Multiply (ii) by 4: $8x + 4y = 28$ (iii)

B Add (i) and (iii):
$$11x = 33$$

C Divide by 11:
$$x = 3$$

D Substitute in (ii):
$$y = -1$$

9 The curve shown has equation $y = 2 + 4x \square x^2$.

Which **one** of the following is an estimate for the gradient of the curve at the point where x = 4?

- **A** 4
- $\mathbf{B} \qquad \frac{1}{2}$
- $C = -\frac{1}{2}$
- **D** □4

Three of the following statements are true and **one** is false. Which one is **false**?

- $\mathbf{A} \qquad \left(2xy^2\right)^3 = 6xy^6$
- $\mathbf{B} \qquad 2xy^3 \times 3x^3y = 6(xy)^4$
- C 2(x-1)-3(2x-3)=7-4x
- $\mathbf{D} \qquad \frac{x^3 \times x^4}{x^7} = 1$